Stress-Strain Behaviour of Completely Decomposed Granite in Both Triaxial and Plane Strain Conditions

نویسنده

  • Jian-Hua Yin
چکیده

Most of the field problems in geotechnical engineering are in three dimensional state or close to a plane strain condition. Strength and deformation properties of soils in plane strain condition are considerably different from those in an axisymmetric condition. Many researchers have investigated the behaviour of soils under a plane strain condition. However, most of the previous studies have concentrated on sedimentary type of soils like sand and clay. Our understanding on the plane strain behaviour for residual soils is less than that for sedimentary soils. A true triaxial system with four sliding rigid-plates and real time feedback control has been used to test specimens of a completely decomposed granite (CDG) soil (a residual soil) under plane strain condition. The setup of the true-triaxial rigid plates is briefly introduced first. The preparation of soil specimens and testing procedures are described. The basic properties of the CDG are presented. The stressstrain and strength behaviour of the soil obtained under plane strain condition was investigated and compared to the behaviour obtained under axisymmetric loading conditions. The results revealed that the critical state line in q-p′ space obtained under plane strain condition is the same as that obtained under axisymmetric condition. However, the critical state line in eln p′ space obtained under undrained plane strain condition is different from that obtained under axisymmetric condition. The peak friction angle for plane strain tests is higher than that from axisymmetric loadings. It is also found that shear bands occur only in drained plane strain compression. Defuse bulging is the mode of failure for undrained plane strain as well as triaxial loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stress-Strain-Strength Behaviour of a Completely Decomposed Granite Soil Using a New Advanced True Triaxial Testing System

Completely decomposed granite (CDG) soil is the most common type of soils found in more than 90% of the land area in Hong Kong. The measurement of the stress-strain-strength behaviour of the CDG soil is very important for deformation and stability analysis of slopes, retaining walls, excavations, deep and shallow foundations related to the CDG soil ground. As most of these geotechnical structur...

متن کامل

Modelling of Stress-Strain Behaviour of Clayey Soils Using Artificial Neural Network

In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to mode...

متن کامل

Modelling of Stress-Strain Behaviour of Clayey Soils Using Artificial Neural Network

In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to mode...

متن کامل

A Multi Plane Model for Natural Anisotropy of Sand

Anisotropy of sand is mainly due to the geometrical arrangement of particles that depends on the orientation of applied load respect to the bedding plane. It is geologically due to micro-fabric created by the arrangement of the particles configured during deposition. Most of the models develop using stress/strain invariants are not capable of identifying this kind of anisotropy. This is mainly ...

متن کامل

The Micromechanics of Westerley Granite at Large Compressive Loads

The micromechanical damage mechanics formulated by ASHBY and SAMMIS (Pure Appl Geophys 133(3) 489–521, 1990) has been shown to give an adequate description of the triaxial failure surface for a wide variety of rocks at low confining pressure. However, it does not produce the large negative curvature in the failure surface observed in Westerly granite at high confining pressure. We show that thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012